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a b s t r a c t

The two-fluid model is widely used in studying gas–liquid flow inside pipelines because it can qualita-
tively predict the flow field at low computational cost. However, the two-fluid model becomes ill-posed
when the slip velocity exceeds a critical value, and computations can be quite unstable before the flow
reaches the ill-posed condition. In this work, computational stability of various convection schemes
together with the Euler implicit method for the time derivatives in conjunction with the two-fluid model
is analyzed. A pressure correction algorithm for the two-fluid model is carefully implemented to mini-
mize its effect on numerical stability. von Neumann stability analysis shows that the central difference
scheme is more accurate and more stable than the 1st-order upwind, 2nd-order upwind, and QUICK
schemes. The 2nd-order upwind scheme is much more susceptible to instability than the 1st-order
upwind scheme and is inaccurate for short waves. Excellent agreement is obtained between the predicted
and computed growth rates of harmonic disturbances. The instability associated with the two-fluid
model discretized system of equations is related to but quantitatively different from the instability asso-
ciated with ill-posedness of the two-fluid model. When the computation becomes unstable due to the ill-
posedness, the machine roundoff errors from a selected range of short wavelengths, which scale with the
grid size, are amplified rapidly to render the computation of any targeted long wavelength variation use-
less. For the viscous two-fluid model with wall friction and interfacial drag, a small-amplitude long wave-
length disturbance grows due to viscous Kelvin–Helmholtz instability without triggering the grid scale
short waves when the system remains well posed. Under such a condition, central difference is found
to be the most accurate discretization scheme among those investigated.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Gas–liquid flow inside a horizontal pipeline is prevalent in the
handling and transportation of fluids. A reliable flow model is
essential to the prediction of the flow field inside the pipeline. To
fully simulate the system, Navier–Stokes equations in three-dimen-
sions are required for each phase. However, it is very expensive to
simulate flows in long pipelines with contemporary computer
capabilities. To reduce the computational cost and obtain basic flow
properties, such as gas volume fraction, liquid and gas velocity, and
pressure, a one-dimensional two-fluid model is often used to obtain
a realistic prediction for the gas–liquid flow inside a pipeline.

The separated flow model, one common type of two-fluid mod-
el, consists of two sets of conservation equations for mass, momen-
tum and energy for the gas phase and the liquid phase. It was
proposed by Wallis (1969), and further refined by Ishii (1975).
Although it has demonstrated success in simulating two-phase
ll rights reserved.
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flow in a pipeline, the separated flow model, hereafter referred to
as the ‘‘standard” two-fluid model, suffers from an ill-posedness
problem. When the relative velocity between the liquid and gas ex-
ceeds a critical value, the governing equations do not possess real
characteristics (Gidaspow, 1974; Ramshaw and Trapp, 1978; Jones
and Prosperetti, 1985; Song and Ishii, 2000). This ill-posedness
suggests that the results of the standard two-fluid model do not re-
flect the real flow physics inside the pipe for those conditions. The
standard two-fluid model only gives meaningful results when the
relative velocity between the gas phase and liquid phase is less
than a critical value, which depends on pipe diameter, gravity,
and liquid level, among other flow properties. However, this criti-
cal value coincides with the inviscid Kelvin–Helmholtz (IKH) sta-
bility condition for stratified flow (Issa and Kempf, 2003).
Because the occurrence of the instability characterizes a flow re-
gime transition from stratified flow to slug flow or annular flow
(Barnea and Taitel, 1994), ill-posedness of the standard two-fluid
model is interpreted as triggering the flow regime transition (Bar-
nea and Taitel, 1994; Brauner and Maron, 1992).

The computational methods for solving the standard two-fluid
model have been investigated by many researchers. In this study,
it is further assumed that both liquid and gas phases are incom-
pressible because most of stratified flows are at relatively low
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speed compared with the speed of sound. To solve the incompress-
ible standard two-fluid model equations, Newton iteration is com-
monly used (Liles and Reed, 1978; Mahaffy, 1982). However, the
complexity associated with the Jacobian compromises the effi-
ciency of this approach. Another approach is to simplify the gov-
erning system to only two equations for the liquid phase volume
fraction and liquid velocity and neglect the transient terms in the
gas mass and momentum equations (Barnea and Taitel, 1994; Chan
and Banerjee, 1981). The pressure correction scheme (Patankar,
1980) has recently been implemented by various researchers (Issa
and Woodburn, 1998; Issa and Kempf, 2003; Ansari and Shokri,
2007) for solving the standard two-fluid model.

When the standard two-fluid model becomes ill-posed due to
high slip velocity, the analytical solution for any specified initial
disturbance grows indefinitely and does not carry any physical
meaning. When a numerical scheme employed to solve the stan-
dard two-fluid model becomes unstable, the magnitude of the
numerical error increases at a faster rate than the growth rate of
the physical solution and similarly the solution does not carry
any meaning. However, numerical instability may not be quantita-
tively the same as the instability caused by the ill-posedness, and
the numerical instability may occur earlier than the ill-posedness
condition, depending on how the system of equations is discret-
ized. Thus, a thorough investigation on the numerical instability
of the standard two-fluid model is desirable.

Lyczkowski et al. (1978) used von Neumann stability analysis to
study a compressible two-fluid model in conjunction with their
numerical scheme and found that numerical instability and ill-
posedness may not be identical. However, their two-fluid model
lacked the gravitational term and the study focused on one discret-
ization scheme and is thus incomplete. Stewart (1979), Ohkawa
and Tomiyama (1995) and Shieh (1994) attempted to analyze the
numerical stability of a two-fluid model with a simplified model
equation as an alternative. Ohkawa and Tomiyama (1995) demon-
strated that a higher order upwind scheme yields a more unstable
numerical solution than the 1st-order upwind scheme based on
solutions of the simplified model.

Issa and Kempf (2003) used the donor-cell scheme for the con-
vection term and the pressure-correction method (Patankar, 1980)
for coupling the velocity to the pressure in solving the inviscid and
viscous two-fluid models. They also found that when the system is
ill-posed, which coincides with the inviscid Kelvin–Helmholtz
(IKH) instability, the refinement of the grids leads to a higher
growth rate of the solution. Since viscous Kelvin–Helmholtz
(VKH) instability is triggered at a lower slip velocity than that for
the IKH instability (Lin and Hanratty, 1986, 1987), the system
can still be well-posed while a small disturbance grows in time
for a range of slip velocity. Within this range, Issa and Kempf
(2003) simulated the transition from stratified to slug flow using
a viscous two-fluid model employing the donor-cell difference
scheme.

Donor-cell is a first-order upwind (FOU) scheme which is
known to be 1st-order accurate with large numerical dissipation.
Certain questions naturally come to the forefront:

� Is the FOU a good scheme for discretizing the convection term
when solving the standard two-fluid model system using the
pressure-correction method?

� Is the FOU scheme superior comparing with other well known
methods such as 2nd-order upwind (SOU), central difference
(CD), and quadratic upstream interpolation for convection kine-
matics (QUICK) schemes?

� Even more importantly, does the 1st-order upwind scheme
ensure that the condition for the numerical instability lie as
close as possible to the ill-posedness condition so that the tran-
sition to slug flow is predicted at the correct slip velocity?
Hwang (2003) presented a detailed mathematical study on the
accuracy of numerical schemes for hyperbolic as well as non-hyper-
bolic model systems. He showed that segregated treatment using
the upwind scheme on each equation leads to poor stability. His
study also suggested that an accurate numerical solution for a
non-hyperbolic system is possible for a limited time, despite the
ill-posedness or lack of hyperbolicity of the physical problem. Prosp-
eretti (2007) argued that the loss of hyperbolicity in the standard
two-fluid model prevents physically relevant solutions from being
obtained; furthermore the numerical solution will be unstable for
a disturbance of any wavelength since the machine error induced
short waves grow rapidly and eventually dominate the solution.

In order to appreciate Prosperetti’s insight and understand how
to interpret Hwang’s (2003) numerical solution of a non-hyper-
bolic system before it is dominated by short wave error, it is
instructive to carefully examine how the short waves originate
and grow. The central questions are:

� For a given numerical algorithm and grid density for the two-
fluid model, what wavelength will be naturally selected to grow
most rapidly?

� What is the growth rate of the selected short waves?
� How does the non-linearity in the governing equations affect the

selected wavelength and the growth rate?
� If the computation survives the rapid growth of the short waves

for an ill-posed non-linear problem, can the subsequent numer-
ical solution be trusted?

� How does the interfacial drag between two fluids affect the
computational stability when various difference schemes are
used?

In this study, an implicit pressure correction scheme is imple-
mented to discretize the two-fluid model equations. Care has been
taken so that mass and momentum conservation across each com-
putational cell are strictly enforced. The von Neumann stability
analysis is employed to study the stability of the discretized stan-
dard inviscid two-fluid model with different interpolation schemes
for the convection term. Examination of the wave amplification
factors using the FOU, SOU, QUICK, and CD schemes shows that
the CD scheme is more accurate and more stable, a result which
is not intuitively obvious. The CD scheme gives the critical slip
velocity that is very close to the IKH stability criterion—an essential
requirement for accurate computation of stratified flow. Excellent
agreement for the growth of the wave amplitude is obtained be-
tween the von Neumann stability analysis and the actual computa-
tion under various conditions for the discretization schemes
investigated. For an ill-posed system or when the computation be-
comes unstable, the growth of a specified primary long wavelength
disturbance as well as the growth of the machine roundoff error on
a selected group of wavelengths is discussed.

For the standard viscous two-fluid model, the von Neumann sta-
bility analysis is used to examine the numerical stability for flow
conditions after the VKH instability is triggered. The performance
of different discretization schemes used with the standard viscous
two-fluid model is compared. The relation between the numerical
instability and the VKH instability of the viscous flow two-fluid
model is clarified. It is demonstrated that the central difference
scheme is most accurate and reliable for the standard viscous two-
fluid model among the four discretization schemes investigated.
2. Governing equations

The basis for the standard two-fluid model is a set of one-
dimensional conservation equations for the balance of mass,
momentum and energy for each phase. The one-dimensional con-
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servation equations are obtained by integrating the flow properties
over the cross-sectional area of the flow. The schematic depiction
of two-phase flow in a horizontal pipe is shown in Fig. 1.

Because the ill-posedness originates from the modeling of the
mass and momentum conservations, it is only necessary to con-
sider the continuity and momentum equations in the standard
two-fluid model. For simplicity, no mass transfer between phases
is implemented. Surface tension is also neglected since it only acts
on small scales, while the waves determining the flow structure in
a pipe flow are usually of long wavelength. Hence, the governing
equations for the standard two-fluid model in a pipeline with con-
stant flow area are as follows:

o

ot
ðalÞ þ

o

ox
ðulalÞ ¼ 0; ð1Þ

o

ot
ðagÞ þ

o

ox
ðugagÞ ¼ 0; ð2Þ

o

ot
ðulalÞ þ

o

ox
ðu2

l alÞ ¼ �
al

ql

opi

ox
� g cos bHl

oal

ox

� alg sin b� slSl

Aql
þ siSi

Aql
; ð3Þ

o

ot
ðugagÞ þ

o

ox
ðu2

gagÞ ¼ �
ag

qg

opi

ox
� g cos bHg

oal

ox

� agg sin b� sgSg

Aqg
� siSi

Aqg
; ð4Þ

where t and x are the respective time and axial coordinates, a is the
volume fraction, u is the velocity, p is the pressure, q is the density,
g is the gravitational acceleration, b is the pipe inclination angle, s is
the shear stress, S is the perimeter over which s acts, A is the pipe
cross sectional area; the subscripts l and g denote the liquid and
gas, respectively, and the subscript i denotes the interface. Hl and
Hg are the hydraulic depth, defined as

Hl ¼
al

oal=ohl
¼ al

a0l
¼ D
ðu� 0:5 sin 2uÞ

4 sin u
; ð5Þ

and

Hg ¼
ag

oag=ohg
¼ ag

a0g
¼ D

p�uþ 0:5 sin 2u
4 sinu

; ð6Þ

where hl is the liquid layer depth, hg is the gas layer depth, D is the
pipe diameter, and u is the angle between the interface and the ver-
tical centerline as shown in Fig. 1. It is also noted that

al þ ag ¼ 1: ð7Þ

For the standard inviscid two-fluid model, the shear stress
terms are zero. Thus the governing equations are Eqs. (1)–(7) with-
out the last two terms in Eqs. (3) and (4).

For the standard viscous two-fluid model, shear stresses sl, sg

and si must be specified to achieve closure. There are many sug-
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Fig. 1. Schematic depiction of two-p
gested shear stress correlations for the standard two-fluid model.
The widely accepted shear stress correlations by Taitel and Dukler
(1976) are used in this study:

sl ¼ fl
qlu

2
l

2
; sg ¼ fg

qgu2
g

2
; si ¼ fi

qgðug � ulÞjug � ulj
2

: ð8Þ

Liquid and gas friction factors f are given by

fl ¼ Cl
ulDl

ml

� ��n

; f g ¼ Cg
ugDg

mg

� ��m

; ð9Þ

in which hydraulic diameters Dl and Dg are defined as

Dl ¼
4Al

Sl
; Dg ¼

4Ag

Sg þ Si
: ð10Þ

The coefficients Cg and Cl are equal to 0.046 for turbulent flow
and 16 for laminar flow, while n and m take the values of 0.2 for
turbulent flow and 1.0 for laminar flow. The interfacial friction fac-
tor is assumed to be fi = fg or fi = 0.014 when fg < 0.014.

3. Theoretical analysis – characteristics and ill-posedness

Eqs. (1)–(4) form a system of 1st-order PDEs, and characteristic
roots, k, of the system can be found. The system is hyperbolic when
the characteristic roots are real. Complex roots imply an elliptic
system and cause the standard two-fluid model system to become
ill-posed since only initial conditions can be specified in the tem-
poral direction; under such a condition, any infinitesimal distur-
bance will cause the waves to grow exponentially without bound.

Let U be the vector (al,ul,ug,p)T. Eqs. (1)–(4) can be written in
vector form as

½A� oU
ot
þ ½B� oU

ox
¼ ½C�; ð11Þ

where [A], [B] and [C] are coefficient matrices given by

½A� ¼

1 0 0 0
�1 0 0 0
ul al 0 0
�ug 0 ag 0

2
6664

3
7775; ð12aÞ

½B� ¼

ul al 0 0
�ug 0 ag 0

u2
l þ gHl cos b 2alul 0 al

ql

�u2
g þ gHg cos b 0 2agug

ag

qg

2
66664

3
77775; ð12bÞ

½C� ¼

0
0

�alg sin b� slSl
Aql
þ siSi

Aql

�agg sin b� sg Sg

Aqg
� siSi

Aqg

2
66664

3
77775: ð12cÞ
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The characteristic roots k of the system are determined from:

½A�k� ½B�j jj j ¼ 0; ð13Þ

where kk denotes the determinant of the matrix. After expansion of
the above determinant, the characteristic roots are obtained,

k ¼
qlul
al
þ qg ug

ag

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ql
al
þ qg

ag

� �
ql�qg

a0
l

g cos b� qlqg

alag
ðug � ulÞ2

r
ql
al
þ qg

ag

: ð14Þ

When g = 0, Eq. (14) possesses real roots only if k = ug = ul. Other-
wise, the standard two-fluid model becomes ill-posed (Gidaspow,
1974). If g – 0, the real roots (or well-posedness) requirement gives

DU2 ¼ ðug � ulÞ2 < DU2
c ¼

al

ql
þ ag

qg

 !
ql � qg

a0l
g cos b: ð15Þ

Eq. (15) gives the critical value DUc for the slip velocity DU between
two phases, beyond which the system becomes ill-posed. The ill-
posedness criterion based on the characteristic analysis is exactly
the same as that from the IKH analysis for the standard two-fluid
model (Barnea and Taitel, 1994).

It is noted that the two fluid model viscous terms appear only in
vector [C]. However, Eq. (13) shows that the characteristics are not
affected by the vector [C]. Thus, viscous terms in the standard two-
fluid model do not affect its characteristics. The criterion for ill-
posedness for the standard viscous two-fluid model is identical
to that for the standard inviscid two-fluid model.

Nevertheless, the viscous effect in [C] can affect the linear sta-
bility of the standard two-fluid model. When an infinitesimal dis-
turbance is introduced to a steady state base flow and the
amplitude for a certain wavelength grows with time, the base flow
condition is referred to as viscous Kelvin–Helmholtz (VKH) unsta-
ble. In the physical flow field, the amplitude grows to be order one
and causes the flow regime to transition from stratified to slug flow
(Issa and Kempf, 2003). Details of the VKH and IKH instability anal-
yses can be found in Liao (2005).

The IKH analysis provides a stability condition for the standard
two-fluid model as well as useful information on the growth rate of
disturbances in the standard inviscid two-fluid model. Mass and
momentum equations of the liquid phase and the gas phase are lin-
earized and substituted for the perturbed liquid volume fraction,
liquid and gas phase velocities, and pressure in the form of eex-
p(I(xt-kx)) in which I ¼

ffiffiffiffiffiffiffi
�1
p

denotes the imaginary unit, e is the
amplitude, x is the angular frequency, and k is the wavenumber.
The following system is obtained for the disturbance amplitude:

x� ulk �alk 0 0
x� ugk 0 agk 0

�k Hl
al

g cos b x� ulk 0 k
ql

�k Hl
al

g cos b 0 x� ugk k
qg

�����������

�����������

e
el

eg

ep

���������

���������
¼ 0: ð16Þ

It is noted that the stability condition for IKH analysis obtained
from Eq. (16) is identical to the ill-posedness condition. However,
the stability condition of VKH is different from IKH and usually occurs
at a lower slip velocity. The corresponding disturbance amplitude for
VKH is given in Liao (2005). Eq. (16) also serves as a constraint on the
amplitude and phase of the initial disturbances in the numerical sim-
ulation using the standard inviscid two-fluid model.
Wu Pu
Eu
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Pα
x

Main control
volume 

EpWp

Wα EαWp ep
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Fig. 2. Staggered grid arrangement in standard two-fluid model.
4. Computational instability analysis

4.1. Description of the numerical method

Since the shear stress terms in the standard two-fluid model are
only source terms, they do not affect the ill-posedness as discussed
in Section 3. For simplicity, numerical implementation for the stan-
dard inviscid two-fluid model is first introduced. The mass conser-
vation equations are the same for the standard viscous and inviscid
two-fluid models. The inviscid momentum conservation equations
are Eqs. (3) and (4) without the shear stress terms.

In general, the governing Eqs. (1)–(4) without the shear stress
terms are solved iteratively. The basic procedure is to solve the li-
quid continuity equation for the liquid volume fraction, and the li-
quid and gas phase momentum equations are used to obtain the
liquid and gas phase velocities. To obtain a governing equation
for the pressure, Eqs. (1) and (2) are first combined to form a total
mass conservation,

o

ox
ðugagÞ þ

o

ox
ðulalÞ ¼ 0: ð17Þ

Substituting the liquid and gas momentum equations into Eq. (17)
yields a constraint on pressure. A SIMPLE type of pressure correc-
tion scheme (Patankar, 1980) is then used.

A finite volume method is employed to discretize the governing
equations. A staggered grid (Fig. 2) is adopted to obtain a compact
stencil for pressure (Ferziger and Peric, 1996). On the staggered
grids, the flow properties such as volume fraction, density and
pressure are evaluated at the center of the main control volume,
and the liquid and gas velocities are evaluated at the cell face of
the main control volume.

The Euler backward scheme is employed for the transient term.
The discretized liquid continuity equation becomes

Dx
Dt
ððalÞP � ðalÞ0PÞ þ ðalulÞe � ðalulÞw ¼ 0; ð18Þ

where the superscript 0 denotes the values at the previous time
step. The subscript P denotes the center of the main control volume,
while subscripts e and w denote the east and west faces of the main
control volume, respectively. The liquid velocity at the cell face is
known, and the volume fraction at the cell face is evaluated using
various interpolation schemes. Among them, CD, FOU, SOU, and
QUICK schemes are commonly used. Eq. (2) for the gas phase is sim-
ilarly discretized.

The liquid momentum equation (Eq. (3) without shear stress
terms) is integrated across the velocity control volume. Using sim-
ilar notation, the discretized liquid momentum equation is

Dx
Dt
ðalulÞP � ðalulÞ0P
� �

þ ðulÞeðalulÞe � ðulÞwðalulÞw

¼ ðalÞP
ql
ðpw � peÞ þ ððalÞw � ðalÞeÞHlg cos b� DxðalÞPg sin b: ð19Þ

It is important to note that the interpolation schemes used in
Eq. (19) must be exactly the same as those in Eq. (18) in order to
reduce the dissipation and dispersion errors.
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The gas phase momentum equation is similarly treated,

Dx
Dt
ðagugÞP � ðagugÞ0P
� �

þ ðugÞeðagugÞe � ðugÞwðagugÞw

¼ ðagÞP
qg
ðpw � peÞ þ ððalÞw � ðalÞeÞHgg cos b� DxðagÞPg sin b:

ð20Þ

For the pressure correction scheme, Eq. (17) is integrated across
the main control volume. The discretized equation is

ðagugÞe � ðagugÞw þ ðalulÞe � ðalulÞw ¼ 0: ð21Þ

Because Eq. (17) is obtained by combining Eqs. (1) and (2), the
discretization of Eq. (21) should be exactly the same as that of Eq.
(18) and discretized Eq. (2). The final pressure equation is obtained
by substituting the two momentum Eqs. (19) and (20), into Eq.
(21).

It is noted that the SOU scheme involves five grids points. How-
ever, this study only simulates uni-directional co-current flow,
where the contribution of the downstream side grids is always
zero in the discretized equation. The five point scheme in the dis-
cretized equations is reduced to a three point scheme. The final
discretized 3 point equation is solved directly using the standard
Thomas algorithm.

4.2. von Neumann analysis for various convection schemes

von Neumann stability analysis (Hirsch, 1988) is commonly
used for analyzing the stability of a finite difference scheme. In this
derivation, the FOU scheme is used as an example, and both liquid
and gas velocities are assumed positive. The grid index is shown in
Fig. 3. Discretization of Eq. (18) using FOU leads to

ðalÞni � ðalÞn�1
i

Dt
Dxþ ðulÞniþ1

2
ðalÞni � ðulÞni�1

2
ðalÞni�1

� �
¼ 0: ð22Þ

Splitting the variables into base values and disturbances, the
linearized equation for the disturbance of al is

ðâlÞni � ðâlÞn�1
i

Dt
Dxþ al ðûlÞniþ1

2
� ðûlÞni�1

2

� �
þ ul ðâlÞni � ðâlÞni�1

� 	� �
¼ 0;

ð23Þ

where ‘‘ ˆ ” denotes disturbance values. Expressing disturbances as

ðâlÞni ¼ eEneIkx; ðûlÞni ¼ elE
neIkx; ðûgÞni ¼ egEneIkx; ð24Þ

where E is a common amplitude factor, and k is the wavenumber,
Eq. (23) is simplified to

e
Dx
Dt
ð1� G�1Þ þ ulð1� e�I/Þ

� �
þ elal e

1
2I/ � e�

1
2I/

� �
¼ 0: ð25Þ

Here G is the amplification factor,

G ¼ En=En�1; ð26Þ

and / is the phase angle,

/ ¼ k � Dx; ð27Þ
Dx
Dt ð1� G�1Þ þ ugð1� e�I/Þ �ag e

1
2I/ � e�

1
2I/

� �
0

Dx
Dt ð1� G�1Þ þ ulð1� e�I/Þ 0 al e

1
2I/ � e

�

ðql � qgÞg cos b Hl
al

e
1
2I/ � e�

1
2I/

� �
�qg

Dx
Dt ð1� G�1Þ
þugð1� e�I/Þ

 !
ql

Dx
Dt ð1� G

þulð1�

 

2
6666664
defined over [0,p] and it represents all the resolvable wave compo-
nents in the computational domain for the given grid. Short waves
correspond to the region near / = p.

The wave growth equation for the gas phase mass conservation
equation is similarly obtained,

e
Dx
Dt
ð1� G�1Þ þ ugð1� e�I/Þ

� �
� egag e

1
2I/ � e�

1
2I/

� �
¼ 0: ð28Þ

For the liquid momentum, Eq. (19) is discretized with the FOU
scheme as

ðulÞniþ1
2
ðalÞniþ1

2
� ðulÞn�1

iþ1
2
ðalÞn�1

iþ1
2

Dt
Dxþ ððulÞniþ1ðalulÞniþ1

2
� ðulÞni ðalulÞni�1

2
Þ

¼
ðalÞniþ1

2

ql
ððpÞni � ðpÞ

n
iþ1Þ þ g cos bHlððalÞni � ðalÞniþ1Þ

� DxqlðalÞniþ1
2
g sin b; ð29Þ

which is subsequently linearized and simplified with the aid of the
liquid mass conservation equation,

Dx
Dt

qlððûlÞniþ1
2
� ðûlÞn�1

iþ1
2
Þ

� �
þ qlulððûlÞniþ1

2
� ðûlÞni�1

2
Þ

¼ ðp̂n
i � p̂n

iþ1Þ þ qlg cos b
Hl

al
ððâlÞni � ðâlÞniþ1Þ: ð30Þ

For the gas phase, the velocity disturbance is governed by

Dx
Dt
ðqgððûgÞniþ1

2
� ðûgÞn�1

iþ1
2
ÞÞ þ qgugððûgÞniþ1

2
� ðûgÞni�1

2
Þ

¼ ðp̂n
i � p̂n

iþ1Þ þ qgg cos b
Hg

ag
ððâlÞni � ðâlÞniþ1Þ: ð31Þ

The pressure term can be canceled by combining Eqs. (30) and
(31). Substituting Eq. (24) into the combined momentum equation
leads to

el
Dx
Dt

qlð1� G�1Þ þ qlulð1� e�I/Þ
� �

� eg
Dx
Dt

qgð1� G�1Þ þ qgugð1� e�I/Þ
� �

þ eðql � qgÞg

� cos b
Hl

al
e

1
2I/ � e�

1
2I/

� �
¼ 0: ð32Þ

Eqs. (25), (28) and (32) are written in the form of an amplifica-
tion matrix:
�1
2I/
�

�1Þ
e�I/Þ

!

3
7777775

e
eg

el

�������
������� ¼ 0: ð33Þ
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Non-trivial solutions for (e,eg,el)T exist only when the determi-
nant of the matrix is zero. Hence,

aðG�1Þ2 þ bðG�1Þ þ c ¼ 0; ð34Þ

where

a ¼ ql

al
þ

qg

ag
; ð35aÞ

b ¼ �2
qg

ag
ð1þ CFLgDð/ÞÞ þ

ql

al
ð1þ CFLlDð/ÞÞ

� �
; ð35bÞ

c ¼
qg

ag
ð1þ CFLgDð/ÞÞ2 þ

ql

al
ð1þ CFLlDð/ÞÞ2

þ Dt
Dx

� �2

ðql � qgÞg cos b
Hl

al
4 sin2 /

2

� �� �
; ð35cÞ

and D(/) = 1 � e�I/, CFL is the Courant number,

CFLl ¼
Dt
Dx

ul; and CFLg ¼
Dt
Dx

ug : ð36Þ

Eq. (34) is valid for the amplification factor of other discretiza-
tion schemes with appropriate D(/). The values of D (/) for differ-
ent schemes are summarized in Table 1. The amplification factors
can be easily found from Eq. (34),

G ¼ 2a

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p : ð37Þ

The scheme will be stable when the spectral radius q(G) 6 1 for all
/.

4.3. Numerical scheme and von Neumann stability analysis for the
standard viscous two-fluid model

The pressure correction scheme for the inviscid two-fluid model
in Section 4.1 can be extended to solve the standard viscous two-
fluid model with inclusion of the wall friction and interfacial drag
terms.

Generally, the von Neumann stability analysis for the standard
viscous two-fluid model scheme is similar to that for the standard
inviscid two-fluid model. Both the liquid and gas velocities are as-
sumed positive for simplicity and practicality.

The equation for the amplification factor G shares the same
form as that for the inviscid two-fluid model growth rate equation
(Eq. (34)) but with different coefficients:

a ¼ ql

al
þ

qg

ag
; ð38aÞ

b ¼ �2
qg

ag
ð1þ CFLgDð/ÞÞ þ

ql

al
ð1þ CFLlDð/ÞÞ

� �

þ Dt
1
ag

oF
oug
� 1

al

oF
oul

� �
; ð38bÞ

c ¼
qg

ag
ð1þ CFLgDð/ÞÞ2 þ

ql

al
ð1þ CFLlDð/ÞÞ2

þ Dt
Dx

� �2

ðql � qgÞg cos b
Hl

al
4 sin2 /

2

� �� �

þ I
Dt
Dx

� �
Dt sin /

oF
oal
þ Dt

ag

oF
oug
ð1þ CFLgDð/ÞÞ

� Dt
al

oF
oul
ð1þ CFLlDð/ÞÞ; ð38cÞ
Table 1
D(/) for different discretization schemes

Scheme D(/)

1st-order upwind 1�e�I/

Central difference eI/�e�I/

2
2nd-order upwind 3�4e�I/þe�2I/

2
QUICK 3eI/þ3�7e�I/þe�2I/

8

where

F ¼ Fl þ Fg ; ð39Þ

and

Fl ¼ �
slSl

Aal
þ siSi

Aal
� qlg sin b; ð40Þ

Fg ¼ �
sgSg

Aag
� siSi

Aag
� qgg sin b: ð41Þ

The values of D(/) in Eq. (38) are summarized in Table 1. Com-
paring the amplification factor of the standard inviscid two-fluid
model (Eqs. (35)a–c), with that for the standard viscous two-fluid
model (Eqs. (38)a–c) additional terms representing the influence
of wall shear stress and interfacial stress on G are readily observable.

4.4. Initial and boundary conditions for numerical solutions

With von Neumann stability analysis, a periodic boundary con-
dition is implicitly assumed. In the computations, such periodic
boundary conditions are necessarily employed in order to provide
a direct comparison.

The von Neumann stability analysis tracks the growth of an
infinitesimal disturbance. In computations, a small initial distur-
bance must be properly introduced without generating additional
higher order harmonic noise. The best initial condition for the dis-
turbance is that from the wave growth equation, such as given by
Eq. (33) for the FOU scheme. However, this approach makes the
imposition of the initial condition too complicated, since initial
conditions vary from one numerical scheme to another. A simpler,
yet effective approach is to use the solution from inviscid Kelvin–
Helmholtz analysis. When the wavenumber of a small amplitude
primary disturbance, k0, is specified at t = 0, the corresponding va-
lue for x can be obtained by setting the determinant of the matrix
in Eq. (16) to zero. Upon the specification of el the rest of the com-
plex valued amplitudes, such as e ¼ al

x
k�ul

el, and similar expressions
for eg, and ep can be determined from Eq. (16). An initial condition
describing a small amplitude primary disturbance that is consis-
tent with the governing equations is important for quantitatively
studying the growth of the disturbance in the context of the stan-
dard two-fluid model. Should the initial condition be inconsistent
with the original equations, unexpected higher harmonic wave
components may develop immediately after the computation is
initiated. Since the flow condition under consideration is close to
becoming unstable, such an additional disturbance may grow
and overtake the targeted primary disturbance and makes it diffi-
cult to assess the accuracy of the numerical scheme.

5. Results and discussion

5.1. Computational stability assessment based on von Neumann
stability analysis

It is well known that for ordinary convection–diffusion equa-
tions, the FOU scheme is less accurate due to the high level of
numerical diffusion. The higher order schemes, such as SOU, CD,
and QUICK, on the other hand, have lower numerical diffusion
and should be more accurate. It is also well known that the CD
scheme is prone to generate grid scale (high wavenumber) oscilla-
tions, which often lead to numerical instability in highly non-linear
systems. To gain an insight into the performance of various discret-
ization schemes when they are applied to the standard two-fluid
model system, detailed comparisons of stability characteristics of
the FOU, SOU, CD, and QUICK schemes on the standard inviscid
two-fluid model are presented first for flow conditions before,
near, and after the ill-posedness. Numerical solutions after
ill-posedness are NOT to be construed to possess physical meaning,
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but instead are useful in understanding the growth of the targeted
primary disturbance, selection of the wavelength of the emerging
short waves, and the growth of those short waves when various
discretization schemes are used.

In this study, air/water stratified flow in a round pipe is consid-
ered. The densities of water and air are 1000 and 1.1614 kg/m3,
respectively. The pipe diameter is 0.078 m and the inclination an-
gle is b = 0. For the unperturbed base flow, the following is used:
al = 0.5, ul = 1 m/s, ug = 17 m/s. The pipe diameter for the inviscid
flow calculation is D = 0.078 m for the discussions presented in
Sections 5.1–5.5, while the pipe diameter used for the viscous flow
instability analysis in Section 5.6 is D = 0.05 m. The CFL number
based on the liquid velocity ul is 0.1. The IKH stability condition,
based on Eq. (15) for the above parameters, is satisfied since
DU = 16 m/s < DUc = 16.0768 m/s. Thus, the standard two-fluid
model for the present condition is analytically well-posed. How-
ever, since the slip velocity is so close to the ill-posed threshold va-
lue, it serves as an ideal testing case to assess the performance of
various discretization schemes. There are two values of G given
by Eq. (37). Since the one with larger magnitude determines the
instability, only the larger jGj is used in this study.

Fig. 4 compares the amplification factors jG(/)j, in which / =
kDx, of four discretization schemes. The solid line is the amplifica-
tion factor by IKH analysis with G = 1 for a well-posed hyperbolic
system. The dashed line is that for the CD scheme. It is slightly low-
er than one, but is very close to one with a slight diffusion error in
the high wavenumber range. This implies the CD scheme is ideal
for computing the standard two-fluid model. The amplification fac-
tor for the FOU scheme shows excessive numerical diffusion at
high k. Furthermore, jGj > 1 at low k, and the computation using
FOU is unstable at this flow condition despite the excessive level
of numerical diffusion. Although SOU is often regarded as a better
scheme than FOU with less numerical diffusion, its performance in
the standard two-fluid model is very poor. For large k, the numer-
ical diffusion of SOU is much larger than that of FOU. For small k,
the amplification factor of SOU is much larger than that of FOU.
The dashed-dot line is the amplification factor of the QUICK
scheme. Its numerical damping at high k is lower than that of
FOU and SOU schemes, but it is still much larger than that of the
CD scheme. At small k, jGj being slightly larger than one indicates
that QUICK is unstable as well. The reason that the amplification
0
0.8

0.85

0.9

0.95

1

1.05

G

G

1

Fig. 4. Amplification factors of various numerical schemes f
factor of the CD scheme is close to the analytical amplification fac-
tor is due to the lack of 2nd-order diffusion error and low disper-
sion error. The overall performance of the SOU is worse than that
of the FOU scheme: (a) jGj exceeds unity further at lower k imply-
ing a stronger instability; (b) jGj is far less than unity at higher k
implying a higher damping for shorter waves. This suggests that
the diffusion and dispersion error in the standard two-fluid model
plays a much more complicated, and perhaps more negative, role
on the numerical stability than that in the simple convection–dif-
fusion equation. The interpolation scheme used in QUICK is essen-
tially a linear interpolation with the upwind correction. Therefore
its numerical damping and stability are worse than those of the
CD scheme, but better than those of FOU and SOU schemes.

Another useful comparison among various discretization
schemes can be made by examining the phase angle of the ampli-
fication factor, arg(G), which characterizes the extent of the
numerical dispersion of a numerical scheme. Fig. 5 shows arg(G)
of the amplification factors with larger absolute value; the unit
of the phase angle is radians. It is seen that the dispersion of the
CD scheme is smaller than the other 3 schemes. The SOU scheme
has the largest dispersion error. The dispersion error of QUICK
and FOU are comparable; and they are between the dispersion er-
ror of the CD and SOU schemes.

Next, the effect of the slip velocity DU = ug–ul on the numerical
stability is examined. Fig. 6 shows the amplification factors of the
CD scheme for a range of values of DU. When D U is smaller than
the critical value, DUc given by the von Neumann stability analysis,
the magnitude of the amplification factors of all the harmonics in
the computational domain are less than one. However, when
DU > DUc, jGj in the low k range exceeds one, as shown by the
curve for DU = 16.1 m/s in Fig. 6. For the condition used in Fig. 6,
numerical computations show a neutral stability condition for
the CD scheme near DUc, CD = 16.0773 m/s, which is very close to
DUc, IKH = 16.0768 m/s with an error of 0.003%. As DU further in-
creases, jGj increases as well. The range of unstable harmonic
wavenumber becomes wider. The amplification factor of the CD
scheme matches that of IKH only for very small k. In the high k
range, numerical damping causes jGj to depart from one more than
in the intermediate k range.

Fig. 7 shows the amplification factors of the FOU scheme for
different values of DU. The neutral or critical slip velocity for the
φ
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2 3

or N = 200, al = 0.5, ul = 1 m/s, ug = 17 m/s and CFLl = 0.1.
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stability conditions of SOU and QUICK schemes are DUc,-

SOU = 13.73 m/s and DUc,QUICK = 16.03 m/s, respectively. Unlike the
CD scheme, there is no significant change of jGj when DU varies.
Numerical results from solving the governing equations indicate
that the neutral stability for the condition shown in Fig. 7 is DUc,

FOU = 14.772 m/s, which is significantly lower than the analytical
value of DUc, IKH = 16.0768 m/s. The behavior of the SOU and QUICK
schemes is similar to that of the FOU scheme, although for the sake
of brevity similar graphs are not shown.

Fig. 8 shows the effect of the liquid velocity on the amplification
factors of the CD scheme by keeping DU = 16 m/s and Dt/Dx = 0.1 s/
m constant. For ul = 0.01 m/s and ul = 0.1 m/s, jGj decreases mono-
tonically with / = kDx and noticeable damping at high k. When ul
increases, jGj in high k range rises significantly, leaving a high
damping saddle at the intermediate k range. On the other hand,
when ul is small and DU is kept constant, CFLg/CFLl is much larger
than one so that it is difficult to keep both CFLl and CFLg in the mod-
erate range, which is essential to the computational stability.

Fig. 9 shows the effect of ul on jGj for the FOU scheme with
DU = 16 m/s, Dt/Dx = 0.1 s/m. The behavior of FOU is quite different
from that of CD shown in Fig. 8. When ul is small, most harmonics
are unstable because DU = 16 m/s is very close to the IKH critical
value for small ul. However, for a larger ul, excessive numerical dif-
fusion present in the FOU scheme stabilizes the computations.

Figs. 10 and 11 show the effect of Dt/Dx on jGj for the CD and
FOU schemes. There is increasing numerical diffusion with increas-



0 1 2 3

φ

0.8

0.85

0.9

0.95

1

1.05

G

12
14.772
16.078
17
18

U(m/s)Δ

IKH, 17

IKH,18

IKH, 16.0768

dddddddddd

G

Fig. 7. Amplification factors of FOU scheme with different values of DU for N = 200, al = 0.5, ul = 1 m/s, and CFLl = 0.1.

0
φ

0.994

0.995

0.996

0.997

0.998

0.999

1

G

0.7

0.75

0.8

0.85

0.9

0.95

1

G
(u

l=
10

m
/s

)
0.01
0.1
1
10

ul (m/s)

G

1 2 3

Fig. 8. Amplification factors of CD scheme with different values of ul for N = 200, DU = 16 m/s, al = 0.5, and Dt/Dx = 0.1 s/m.

J. Liao et al. / International Journal of Multiphase Flow 34 (2008) 1067–1087 1075
ing Dt/Dx, resulting in a decrease in jGj for all wavenumbers. This
can be explained by examining Eqs. (39)a–c. The only place where
Dt/Dx appears is in the last term for c, where it is multiplied by
(ql–qg)g, which is known to stabilize stratified flow. Thus increas-
ing Dt/Dx enhances computational stability.

5.2. Consistency test

Consistency of a numerical scheme requires that the discretized
equations approach the differential equations as the grid spacing
Dx and time step Dt tend to zero (Hirsch, 1988). In other words,
the truncation error must approach zero as (Dx,Dt) ? 0 for the
Taylor series expansion to be valid.

To examine the consistency of the numerical scheme, growth
rates with a small amplitude, sinusoidal primary disturbance and
wavenumber k0 = 2p m�1 are obtained for different grid densities
(N = 100, 200, and 400). The base flow is well-posed: ul = 1.0 m/s,
ug = 17.0 m/s, b = 0, and al = 0.5. The computational domain is
taken to be 1 m long so that Dx = 0.01, 0.005, and 0.0025. At
t = 0 s, the initial disturbance is introduced such that Eq. (16) is
satisfied. Consequently, x = 6.735 s�1, and a

_

gðxÞ ¼ e cosðk0xÞ,
where e = 6.366 � 10�6. The rest of the flow variables are: ûgðxÞ ¼
eg cosðk0xÞ with eg = 2.028 � 10�4 m/s, and ûlðxÞ ¼ el cosðk0xÞ with
el = 9.165 � 10�7 m/s.

Fig. 12 shows the computational error at t = 1.5 s obtained using
the CD scheme for N = 100, 200, and 400. Computational error in
this study is defined as,
Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ul�ul;IKH
el

� �2
þ ug�ug;IKH

eg

� �2
þ al�al;IKH

e

� 	2

 �

N

vuuut
: ð41Þ
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The exact values used are from the analytical solution for a
_

gðxÞ,
u
_

gðxÞ, and ûlðxÞ given by the IKH analysis. The liquid CFL number is
fixed at CFLl = 0.1 for all three grids. Because CFL, ul and ug are con-
stant in this comparison, Dt/Dx is fixed. This ensures that Dt goes
to zero as Dx approaches zero. With N increasing from 100 to 400,
the error between the exact and numerical solutions decreases as
required by consistency. Since the maximum normalized computa-
tional error is 0.0233 for N = 200 at t = 1.5 s, it is seen that N = 200
is sufficient for accurately capturing the disturbance wave with
k0 = 2p m�1. Hence it is used in the rest of this study unless other-
wise mentioned. For FOU, SOU, and QUICK schemes, similar consis-
tency behavior is observed when the computations are stable. For
brevity, the graphical representation is not included.

5.3. Accuracy assessment based on the growth of disturbance

To further validate the accuracy of the pressure correction
scheme, comparisons for the growth of the primary disturbance
of k0 = 2p m�1 between that computed and that predicted analyti-
cally using von Neumann stability analysis are presented. The base
flow under consideration is: ul = 1 m/s, ug = 15 m/s, and al = 0.5.
Hence based on IKH analysis, the disturbance does not grow with
time. Fig. 13 shows the liquid velocity disturbance ûlðxÞ at t = 4 s
after 16,000 time steps obtained using the CD scheme with
CFLl = 0.05. The amplitude of the computed ûlðxÞ is slightly smaller
than that of the analytical solution from IKH analysis. The phases of
the analytical and numerical solutions are almost identical. This
demonstrates excellent performance of the CD scheme for the
standard two-fluid model.

Further insight on the accuracy of the numerical scheme can be
gained by examining the decay of the amplitude of ûlðxÞ using the
amplification factor G obtained from the von Neumann analysis.
For the present condition, the magnitude of the amplification fac-
tor of the CD scheme, with k0 = 2p m�1, is G = 0.999997962 for
each time step. Since it takes 16,000 steps to reach t = 4 s, the ratio
of the disturbance amplitude at t = 4 s to that t = 0 s is
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(0.999997962)16,000 = 0.967918. The actual ratio of the amplitude
using CD scheme is 0.96807, with a difference of 0.016% in the
ratios.

Fig. 14 shows the disturbance wave ûlðxÞ at t = 4 s (after 8000
time steps) and 5.2 s (after 10,400 time steps) for ul = 1 m/s,
ug = 17.5 m/s, al = 0.5, and CFLl = 0.1 using the CD scheme. The ini-
tial primary sinusoidal disturbance is introduced with k0 = 2p m�1,
ag(x) = 6.366 � 10�6 cos(k0x), u

_

1ðxÞ¼2:437�10�7 cosðk0xÞ�1:609�
10�6 sinðk0xÞm/s, and ûgðxÞ¼2:098�10�4 cosðk0xÞ�1:609�
10�6 sinðk0xÞm/s. The slip velocity is DU = 16.5 m/s which is larger
than both the 16.0768 m/s threshold value from IKH analysis and
16.0773 m/s threshold value from the neutral stability condition
of the von Neumann analysis. Hence, analytically it is ill-posed
and computationally it is eventually unstable. Any perturbation
should grow with time both analytically and computationally. At
t = 4 s, ûlðxÞ is still sinusoidal with k = k0 = 2p m�1. At t = 5.2 s, the
original primary wave of k0 = 2p m�1 is overwhelmed by a much
stronger short wave. In Fig. 15, the growth history of the amplitude
of ûlðxÞ is presented. The initial growth stage, from 0 to 4 s, corre-
sponds to the growth of the initial primary wave with k0 = 2p m�1.
Using the von Neumann analysis for jG(k = 2p m�1)j the amplitude
ratio between t = 0 and t = 4 s is 22.84, and the corresponding
amplitude ratio from the computation using the CD scheme is
22.89, suggesting that the growth of the disturbance is dominated
by the primary wave of k0 = 2p m�1. After the initial growth stage a
short wave with higher jGj takes over and becomes dominant in
the numerical solution. This corresponds to the stage of fast
growth in Fig. 15. Although the amplitude of the short wave may
not be considered as small anymore for the linear stability analysis
to be perfectly valid, the wavenumber of the dominant short wave
shown in Fig. 14 actually matches the one predicted by using the
von Neumann analysis. For DU = 16 m/s in the present
computation, the highest jGj occurs at /max = kmaxDx = 0.282743
or kmax = /max/Dx = N/max for a 1 m long domain. This implies that
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Fig. 13. Propagation of ûl using CD scheme for N = 200, ul = 1 m/s, DU = 14 m/s (well-posed), CFLl = 0.05, al = 0.5.

-2.00E-04

-1.50E-04

-1.00E-04

-5.00E-05

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (m)

D
is

tu
rb

a
n

ce
 (

m
/s

)

t=5.2s

t=4s

Fig. 14. Liquid velocity disturbance ûl after 10,400 time steps using CD scheme for N = 200, ul = 1 m/s, D U = 16.5 m/s (ill-posed), CFLl = 0.1, al = 0.5, and t = 5.2 s.

1078 J. Liao et al. / International Journal of Multiphase Flow 34 (2008) 1067–1087
there should roughly be a total of n = kmax/(2p) = N/max/(2p) = 9
peak-to-peak counts in the domain, which is the case shown in
Fig. 14.

Next, a comparison between results from the FOU scheme and
predictions from the von Neumann analysis is presented. The flow
condition and computational parameters are: ul = 0.5 m/s,
DU = 16 m/s, al = 0.5, b = 0; N = 200, and CFLl = 0.02. The initial con-
ditions for the primary disturbance are: k0 = 2p m�1,
e = 6.366 � 10�6, el = 9.165 � 10�7 m/s, and eg = 2.028 � 10�4 m/s.
The flow is stable based on IKH stability analysis, but the compu-
tation will be unstable since for the FOU scheme jG(/)j > 1 for
0 < / = kDx < 1.0210 based on the von Neumann stability analysis,
as shown in Fig. 16. The highest amplification factor is
jGjmax = 1.002014 which occurs at /max = kmax Dx = 0.596902. This
gives n = N/max/(2p) = 19. It is postulated that the harmonic wave
with k = kmax grows from the machine roundoff error at a rate of
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1.002014 per time step and eventually dominates the targeted pri-
mary long wave disturbance of k0 = 2p m�1 introduced at t = 0.
Fig. 17 shows the ûlðxÞ after 12,000 time steps. For k0 = 2pm�1,
jG(0.0314)j = 1.00006270 so that the amplitude of the primary dis-
turbance will be 1.0000627012,000 = 2.122 times the initial value.
Clearly, short waves have grown to be as large as the primary wave
component at t = 2.4. The peak-to-peak count of the short wave in
Fig. 17 is 19 which matches n = 19 predicted using von Neumann
analysis. Because the short waves originate from machine level er-
ror, which has a broad spectral distribution, the amplitudes and
wavelengths of these waves are not uniform and not known. How-
ever, for jGjmax = 1.002014, the amplitude can grow by a factor of
3.06 � 1010 in 12,000 steps. If the initial amplitude of the machine
level error is taken to be of O(10�16), it is reasonable to expect the
amplitude of the dominant short wave to be on the order of
3 � 10�6 after 12,000 time steps, which is consistent with the order
of magnitude of the short wave amplitude shown in Fig. 17. It is
also noted from Fig. 16 that the amplification factor near k = kmax

is only slightly smaller than jGjmax so that the wave components
near k = kmax are also growing rapidly, but at a rate that is slightly
lower than jGjmax. After 12,000 time steps (t = 2.4 s), ûlðxÞ is charac-
terized by the linear superposition of a packet of short waves near
k = kmax together with the primary component (k = k0), as shown in
Fig. 17. Thus the observed wave amplitude can be larger than the
estimate based on jGjmax.

A similar comparison between the predicted and computed
growth of the disturbance using the SOU scheme is presented next.
The flow and computational parameters are: ul = 1 m/s, DU = 16 m/
s, b = 0, al = 0.5, CFLl = 0.05, and N = 200. The initial conditions for
the primary disturbance are: k0 = 2p m�1, e = 6.366 � 10�6,
el = 9.165 � 10�7 m/s, and eg = 2.028 � 10�4 m/s. The maximum of
jGj occurs at /max = 0.911062 with jGjmax = 1.00886. Hence the flow
is analytically stable but computationally unstable. The liquid
velocity disturbance after 3000 computational steps is shown in
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Fig. 18. The peak-to-peak count of the short waves is n = 29 which
matches nmax = N/max/(2p) � 29 based on von Neumann stability
analysis. Similar to the FOU case, the initial amplitude of the ma-
chine roundoff error is estimated to be of O(10�16), and after
3000 steps, the short wave amplitude should reach the order of
10�16 � jGj3000

max � 3� 10�5. This rough estimate based on k = kmax

compares reasonably with the actual disturbance shown in
Fig. 18, which consists of a packet of waves near k = kmax.

5.4. Discussion on the growth of short waves

In the previous section, based on the peak-to-peak count and
the order of magnitude estimate for the growth of the short wave
amplitude, it is deduced that when the numerical scheme is unsta-
ble a packet of short waves of wavenumber near k = kmax originate
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Fig. 18. Liquid velocity disturbance ûl using SOU scheme after 3000 steps of compu
from machine roundoff error during the computation and eventu-
ally become comparable or larger than the primary disturbance of
k0 = 2p m�1. Since the exact solution for the growth of the primary
disturbance is known from the IKH analysis, it can be used to com-
pute the solution errors from various numerical schemes. The con-
tributions from the short waves are ‘‘unexpected” and they will
contribute to the error. Since this error will grow with time from
the level of machine error and eventually destroy the accuracy of
the numerical solution (in capturing the growth of the primary dis-
turbance), it is clear that the ‘‘error” assessment depends on: (i) the
magnitude of the initial amplitude of the primary disturbance and
(ii) the instant of time the error is computed.

To gain further insight into how the short waves interact with
the targeted primary disturbance in affecting the overall accuracy
assessment of the standard two-fluid model, a series of computa-
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tation for N = 200, ul = 1 m/s, DU = 16 m/s (well-posed), CFLl = 0.05, and al = 0.5.
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tions is carried out using a series of initial amplitudes (el ranging
from 10�12 m/s to 10�4 m/s) for the liquid velocity disturbance ûl.
To limit the scope, only the results from the use of the FOU scheme
are presented. The flow and computational parameters are the
same as used in Figs. 16 and 17 except for el. The maximum value
of jûlðxÞj in the domain at each time step is obtained and recorded.
Fig. 19 shows the variations of this maximum value as a function of
time for different values of el.

It is observed that during the initial stage, all amplitudes grow
according to the amplification factor jGj (k0 = 2p m�1) in the form
of eljGjp, in which el is the initial amplitude of the disturbance,
based on von Neumann analysis, and p denotes the pth time step.
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Fig. 20. Fourier components of ûl at v
The short wave grows out of machine roundoff error indepen-
dently in the form of er jGjpmax, in which er 	 O(10�16) is the ampli-
tude of the roundoff error whose exact value is uncertain, and
jGjmax = 1.002014 is the maximum amplification factor for the
FOU scheme obtained from the von Neumann analysis. It corre-
sponds to /max = 0.596902. Clearly, smaller values of el require less
time (or smaller p) for the roundoff error to catch up with the pri-
mary disturbance (k0 = 2p m�1). The envelope of these computed
amplitudes seem to roughly agree with er jGjpmax denoted by the
thick line in Fig. 19, with er taken to be 2 � 10�16.

To understand the emergence of the packet of short waves, the
disturbance ûlðxÞ is decomposed using discrete Fourier transform
60 80 100
n
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arious times using FOU scheme.
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(Press et al., 1992). Fig. 20 shows the magnitude of each Fourier
component for ûlðxÞ computed using the FOU scheme for the same
conditions with which Figs. 16 and 17 are obtained as a function of
n = k/2p. Since the boundary condition is periodic, n is an integer.
At time t = 0, all wave components have the amplitude of machine
roundoff error, except for the primary wave (k0 = 2p m�1 or n = 1).
At t = 1.2 s, a group of wave components near n = 19 have grown
from the machine level noise to about 10�11 for their magnitudes
of the Fourier coefficients. It is clear in the spectral domain that in-
stead of just one particular wave component (k = kmax) that is
growing rapidly with time, there are about 10 other wave compo-
nents near k = kmax which have grown to a slightly lower but sim-
ilar magnitude. However this is still sufficiently below the
magnitude of the primary disturbance. At t = 2 s, the magnitudes
of this group of short waves reach about 10�7 while the Fourier
magnitude of the primary disturbance is about 1.0768 � 10�6. At
t = 2.4 s, a group of higher harmonic waves emerges. The magni-
tude of this group peaks around n = 38, clearly as a result of non-
linearity due to convection. At t = 3 s, even higher harmonics,
which peak around n = 57, 76, and 95, also emerge. The amplitudes
of these short waves (near n = 19, 38, and 57) have exceeded that of
the primary disturbance. At t = 5 s, no visible peaks are observed in
the spectrum and the base flow ul and ug are significantly different
from the initially imposed state due to non-linearity and high level
of numerical damping associated with the FOU scheme. This fun-
damental shift can also be seen in Fig. 19 as the maximum distur-
bance in ûlðxÞ starts to decrease slightly and the computation
remains stable. It is also possible that the non-linearity of the dis-
cretized system becomes so strong that the numerical solution
may have evolved to a different stable state. The result of von Neu-
mann analysis is no longer applicable. This is drastically different
from the case when the CD scheme is used as shown in Fig. 15.
The lack of sufficient numerical damping in the CD scheme eventu-
ally causes the computation to blow up.

However, it is very clear that the ‘‘stable” result obtained using
the FOU scheme at t = 5 s has been completely contaminated by
the short wave errors and by the numerical diffusion. Such compu-
tational results are unphysical and cannot be useful for flow
predictions.

5.5. Faster growth of short waves by grid refinement under ill-posed
condition

Issa and Kempf (2003) demonstrated, based on the standard
two-fluid model finite difference computation, that when the sys-
tem is ill posed, the growth rate of the disturbance increases line-
arly without bound with the number of grids (N) (see their Fig. 5).
Prosperetti (2007) attributed this phenomenon to the loss of
hyperbolicity, and correctly pointed out that ‘‘a finer grid permits
the appearance of shorter wavelengths”.

Since computational analysis always deals with a discretized
system, which contains a certain degree of numerical dissipation
and dispersion, there is a departure from the original differential
equations. An alternative but more direct and quantitative expla-
nation for the computational phenomenon observed by Issa and
Kempf (2003) can be provided by examining the growth factor
G(/ = kDx). Under the same flow condition and keeping the CFL
numbers the same for consistency, Eqs. (34) and (35)a–c show that
G is uniquely determined by / = kDx. When the computation is
unstable, the maximum growth occurs at / = /max or equivalently
at the wavenumber kmax = /max/Dx = N/max/L in which N is the
number of grids and L is the length of the computational domain.
Clearly, the wavelength of the most rapidly growing wave directly
scales with Dx. Grid refinement with increasing N directly causes
an increase in kmax. This completely supports Prosperetti’s insight
that ‘‘a finer grid permits the appearance of shorter wavelengths”
characterized by larger kmax. Furthermore, as discussed in Section
5.4, the growth of the short wave of k = kmax / 1/Dx as a function
of t can be characterized by erjGjt=Dt

max. The value of jGmaxj is indepen-
dent of N as /max is fixed and the exponent can be expressed as
t=Dt ¼ t N�ul

L�CFLl
. Hence the growth rate of the short wave error is

N�ul
L�CFLl

log jGjmax, which is directly proportional to N. This is in com-
plete agreement with Fig. 5 of Issa and Kempf (2003) in which
the growth rate is shown to be linearly increasing with N.

Hwang (2003) analyzed the performance of various upwind
schemes for hyperbolic as well as non-hyperbolic systems. For
non-hyperbolic, ill-posed problems, an accurate solution was ob-
tained before the short waves eventually contaminate the solution.
In particular, Fig. 4 of Hwang (2003) showed that for an ill-posed
condition, the successive grid refinement initially yields a decrease
in error and then an increase in the error at a fixed time.

To directly illustrate the effect of the grid refinement on the
solution and on the growth of the short wave error, computations
are performed on three sets of grids (N = 100, 200, and 400) using
the FOU scheme under the same conditions as used to generate
Figs. 16 and 17; the numerical scheme is unstable under such con-
ditions. The CFL numbers are kept the same in all three sets of
grids. Fig. 21 shows the maximum value of jûlðxÞj as a function of
the time step. After about 10,000 time steps, the short waves take
over and completely contaminate the growth of the primary dis-
turbance. Moreover, the growth of the short waves follows nearly
the same curve which can be described by er jGjt=Dt

max where jGjmax is
the same for all N’s since /max = kmaxDx = 0.596902 is the same un-
der the same flow conditions and same CFL numbers. Thus, when
plotted against time, the growth of the short waves on a finer grid
(thus smaller Dt) computation will be much faster.

In Fig. 4 of Hwang’s (2003) paper, it was shown that the solution
error reaches a minimum as the grid is refined; further refinement
of the grids results in a rapid increase in the error. This is true for
both the FOU scheme and the Fromm scheme. Prosperetti (2007)
attributed such a minimum of solution error as function of Dx to
the rapid growth of the short wave ‘‘as soon as the unstable modes
become possible”.

Fig. 22 illustrates the effect of grid density on the solution accu-
racy with the FOU and CD schemes for the same flow conditions
used for Fig. 17. At t = 2.4, the computational result from various
grids are obtained and compared with the exact result of IKH anal-
ysis. It is noted that the flow is in a well-posed condition so that the
amplitude of the analytical solution for the primary disturbance re-
mains constant.

For larger Dx, the computational error of the primary distur-
bance decreases as Dx is reduced because the truncation error de-
creases with smaller Dx. The error of the CD scheme decreases
faster than that of FOU because of the 2nd-order accuracy. The fur-
ther decrease in Dx leads to dramatically larger error for the FOU
scheme. This is because er jGjt=Dt

max increases rapidly as Dt decreases
for the fixed t = 2.4. For this flow and computational condition,
however, the CD scheme is stable and short waves do not grow
out of the roundoff error. Hence the truncation error continues to
decrease as Dx decreases. The CD scheme is clearly superior to
the FOU scheme.

Fig. 23 shows the effect of grid density on the solution accuracy
with the FOU and CD schemes at the ill-posed condition. Both FOU
and CD schemes are unstable under this condition. The solution er-
ror using each scheme first decreases as Dx is reduced because of
the decrease in the truncation error, and the growing roundoff er-
ror has not reached comparable magnitude. The solution error
reaches a minimum and then the growing roundoff error becomes
comparable with the truncation error. Finally the solution error in-
creases rapidly with smaller Dx. The slope of the error curve in the
log–log plot for larger values of Dx is 1 for the FOU and 2 for the CD
schemes due to the difference in the order of the truncation errors.
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Although the solution for the growing primary disturbance itself is
no longer physically relevant, Fig. 23 shows that the CD scheme
can more accurately predict the growth of the disturbance than
the FOU scheme for small time.

In either case shown in Figs. 22 and 23, once the scheme becomes
computationally unstable (jGjmax > 1) for an otherwise well posed
problem (Fig. 22) or when the physical problem becomes ill-posed
(Fig. 23), it is only prudent to refrain from fine tuning the computa-
tion by finding a grid that gives minimum error. A sound computa-
tional practice is to perform the standard grid refinement test to
ensure the consistency of the numerical scheme before the true ma-
chine roundoff error is reached. Attempts to identify an optimum
grid, that yields a balance between a well behaved truncation error
and a fully blown (or rapidly growing) short wave error due to ill-
posedness or an unstable algorithm, are not useful since the numer-
ical solutions to such a two-phase flow problem carry little physical
meaning. The results shown in Fig. 23 are not an endorsement for
pursuing an ‘‘accurate” solution for an ill-posed problem. Rather,
they merely demonstrate that the CD scheme is more accurate for
standard two-fluid model than the FOU scheme.

5.6. Wave growth in the standard viscous two-fluid model

The foregoing discussions have demonstrated that the CD
scheme has the best stability characteristics for the standard invis-
cid two-fluid model comparing with FOU, SOU, and QIUICK
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schemes. A similar comparison is conducted for the standard vis-
cous two-fluid model and the results are presented in this section.
The main focus is on the flow condition when the viscous Kelvin–
Helmholtz instability has occurred while the inviscid Kelvin–
Helmholtz instability has not occurred. In other words, the system
remains well-posed although a small disturbance introduced on
the system can grow until: (i) excessive numerical damping and
the non-linearity restabilizes the computation; or (ii) the computa-
tion blows up due to the interface reaching the top wall implying
that the stratified flow transits to slug flow. The present work does
not emphasize on developing numerical strategies to force the
transition; and the termination of the computation in the event
the liquid volume fraction becomes one is interpreted as the tran-
sition point from the stratified flow to slug flow.

Before examining the amplification factor, it is important to
note that when the problem is well-posed but VKH unstable, it is
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Fig. 24. Amplification factors of different schemes using standard viscous two flui
necessary for the magnitude of the amplification factor, jGj, to ex-
ceed one for some wavelengths which allows the true solution for
the fluid velocities to grow with time. The computational stability
condition thus should be extended to (Hwang, 2003):

jGnumjmax < maxf1; jGexactjmaxg:

For illustration purposes, water and air are used as examples,
and the pipe diameter is 0.05 m. The computational domain is
1 m long, the grid number is N = 200. The pipe inclination angle
is set to b = 0 for the stability analysis; but it is set to a negative va-
lue in the finite difference computation in order for the gravita-
tional force to overcome the interfacial drag while maintaining
the periodic boundary condition. Fig. 24 compares the amplification
factor jGj of four different discretization schemes and the analytical
amplification factor using VKH instability analysis. The liquid veloc-
ity is ul = 0.6881 m/s, the gas velocity is ug = 10.64 m/s, void fraction
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is a = 0.4360, and CFLl = 0.1. Thus, the system of equations is well-
posed but the slip velocity slightly exceeds the one needed for
developing the VKH instability based on the theoretical analyses.
The VKH amplification factor curve is flat after a certain wavenum-
ber and slightly higher than one. The amplification factor of the CD
scheme is slightly lower than one but quite close to one, except at
the low k, where jGj > 1. The FOU scheme possesses excessive
numerical damping at high k. The SOU scheme possesses larger
numerical damping than that for the FOU scheme at high k. The
performance of the QUICK scheme is between those of CD and
the FOU schemes. The results shown in Fig. 24 generally agree with
those of the standard inviscid two-fluid model. However, shear
stresses cause the flow instability to occur at lower k for the vis-
cous two-phase flow.
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Fig. 26. Amplitude growth history of ûl using CD scheme for N = 200, ul =
Fig. 25 shows an enlarged view of Fig. 24 near / = kDx = 0. At an
extreme low k range, the amplification factors of all schemes agree
well with prediction of the VKH analysis, but when k is slightly lar-
ger, the jG(/)j quickly deviates from that of the exact VKH analysis.
For the growth of the disturbance of certain wavenumber k to be
accurately captured, the grid size Dx has to be extremely small.
It is also seen in Fig. 25 that jG(/)j of FOU scheme is far from those
of the CD, SOU, and QUICK schemes. This reflects the fact that FOU
is only 1st-order accurate while the other three schemes all have
2nd-order accuracy.

To validate the pressure correction scheme for the standard vis-
cous two-fluid model, comparisons between the computed wave
growth and the analytical wave growth predicted using the von
Neumann stability analysis are presented. Fig. 26 shows the
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2 m/s, ug = 0.998174 m/s, b = �0.0617144, al = 0.98, and CFLl = 0.05.
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growth history of a harmonic with k0 = 2pm�1 using the CD
scheme. The parameters used are ul = 2 m/s, ug = 0.998174 m/s,
b = �0.0617144, and al = 0.98. The system is well-posed but the
flow is VKH unstable. The amplitude of the disturbance grows
exponentially with time as shown in Fig. 26. The numerical solu-
tion agrees extremely well with the prediction using VKH analysis.
Based on the von Neumann stability analysis for the CD scheme, it
is predicted that the amplitude from t = 0 to t = 10 s increases by a
factor of 174.75. The computed amplitude ratio is 176.86 with a
difference of 1.21% for a period of 10 s. Furthermore, the amplifica-
tion factor jGj for each time step using the VKH analysis is
1.00006491 and the von Neumann analysis gives jG(k0Dx)j =
1.00006454. This excellent agreement is not surprising since the
CD scheme has been demonstrated to have excellent numerical
accuracy when it is applied to the standard inviscid two-fluid mod-
el. During the final stage of growth, the amplitude of the wave is no
longer small, so the small amplitude assumptions used for the von
Neumann stability analysis and the VKH instability analysis are in-
valid. Thus, the waves enter a non-linear growth stage and the
numerical amplification factor no longer matches the analytical
prediction.

Using the same computational parameters, the growth history
of the disturbance for the FOU scheme is shown in Fig. 27. It is
noted that jG(k0Dx)j = 1.00004197 for the FOU scheme, which is
much smaller than 1.00006491 from the VKH analysis. The smaller
value in jGj is the result of numerical damping inherent with the
FOU scheme. Fig. 27 highlights the discrepancy in the amplitude
growth between the VKH prediction and the FOU scheme.

The foregoing assessment shows that the pressure correction
scheme can be quite accurate in predicting the growth of a wave
or disturbance for both standard inviscid and viscous two-fluid
models. It also clearly shows that the 1st-order upwind scheme
possesses excessive numerical damping while the central differ-
ence scheme has a much better numerical accuracy and is better
suited for the standard viscous two-fluid model.
6. Conclusions

Numerical instability for the standard two-fluid model near the
ill-posed condition is investigated for various discretization
schemes with an Euler implicit method for the time derivatives,
while the pressure correction method is used to obtain the pres-
sure. The von Neumann stability analysis is carried out to obtain
the amplification factor of a small disturbance in the discretized
system. The central difference scheme has the best stability char-
acteristics in handling the standard two-fluid model, followed by
the QUICK scheme. The excessive numerical diffusion in the 1st-or-
der upwind scheme does not lead to an improvement in the
numerical stability; instead, it seems to promote numerical insta-
bility in comparison with the central difference scheme and result
in a smaller critical slip velocity beyond which the disturbance
grows. Despite its nominal 2nd-order accuracy and popularity,
the 2nd-order upwind scheme is much more unstable than the
1st-order upwind scheme when it is applied to solve the standard
two-fluid model equations.

For an initially specified primary long wavelength disturbance,
the amplitude will decay according to the amplification factor for
the given wavenumber and grid size due to numerical dissipation
if the scheme is stable. When the computation becomes unstable
either because of ill-posedness or because of a poor choice of com-
putational strategy or parameters, the computed disturbance will
first grow according to the amplification factor for the long wave
and then it will grow at a much higher rate for a packet of short
waves which correspond to the highest amplification factor. Due
to the quadratic non-linearity of the convection terms in the sys-
tem, frequency doubling is observed and shorter waves emerge
from the computation. With the excessive numerical dissipation
and the distortion caused by non-linearity, it is possible for the
computation to continue and restabilize. However when there is
a very low numerical dissipation, non-linear effects are not enough
to prevent the computation from blowing up. Thus, such computa-
tional results for an ill-posed problem or unstable computational
condition are not reliable and should not be pursued.

The results of the present study on the standard inviscid two-
fluid model suggest that the computational instability is largely
the property of the discretized standard two-fluid model but it is
also strongly affected by the inherent ill-posedness of the standard
two-fluid model differential equations when the slip velocity is
close to the critical value for the system to become ill-posed.

For the standard viscous two-fluid model, the central difference
scheme is also found to be superior to the upwind and QUICK
schemes in terms of the computational accuracy when the Euler
implicit method is used for the time derivatives. The pressure cor-
rection method works well for both standard inviscid and viscous
two-fluid models as long as the system is well-posed.
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